试题
题目:
如图,O是圆心,AB是半圆的直径,CD⊥AB,DE⊥OC,如果BD、CD的长都是有理数,那么图中长为有理数的线段还有
9
9
条.
答案
9
解:如右图,连接AC,BC,
∵AB是圆的直径,
∴∠ACB=90°,
∵CD⊥AB,
∴∠A=∠CDA=∠CDB=90°,∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠A=∠BCD,
∴△ADC∽△CDB,
∴
CD
AD
=
BD
CD
,
CD
2
=AD·BD,
∵BD、CD的长都是有理数,
∴AD是有理数,
∵AB=AD+BD,
∴AB是有理数,
∴OA、OB、OC、OD都是有理数,
∵CD⊥OD,DE⊥OC,
∴∠CDO=∠CED=90°,
∵∠DCE=∠DCO,
∴△CDE∽△COD,
∴
CD
CE
=
CO
CD
,
CD
2
=CE·OC,
∵CD、OC是有理数,
∴CE是有理数,
∴OE是有理数,
根据三角形的面积公式得:
1
2
CD×OD=
1
2
OC×DE,
∴DE是有理数.
综上可知:AD、AB、OA、OB、OC、OD、DE、OE、CE的长为有理数,
故答案为:9.
考点梳理
考点
分析
点评
相似三角形的判定与性质;三角形的面积;圆周角定理.
连接AC,BC,证△ADC∽△CDB,得到比例式,求出AD、OA、OB、OC、OD都是有理数,证△CDE∽△COD,得到比例式,求出CE、OE是有理数,根据三角形的面积公式求出DE是有理数,即可得到答案.
本题主要考查对圆周角定理,三角形的面积,相似三角形的性质和判定等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.