试题
题目:
如图,点A、B、C在⊙O上,AO∥BC,∠OBC=40°,则∠ACB的度数是
20°
20°
.
答案
20°
解:∵AO∥BC(已知),
∴∠AOB=∠OBC=40°(两直线平行,内错角相等);
又∵∠ACB=
1
2
∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠ACB=
1
2
∠AOB=20°.
故答案是:20°.
考点梳理
考点
分析
点评
专题
圆周角定理.
由平行线所夹同位角相等得∠AOB=∠OBC,再由圆周角定理得∠ACB=
1
2
∠AOB,即可求解.
本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.
推理填空题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.