试题
题目:
如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为
3
2
3
2
.
答案
3
2
解:设⊙A与x轴的另一个交点为D,连接CD,
∵∠COD=90°,
∴CD是直径,即CD=10,
∵C(0,5),
∴OC=5,
∴OD=
CD
2
-OC
2
=5
3
,
∵∠OBC=∠ODC,
∴cos∠OBC=cos∠ODC=
OD
CD
=
5
3
10
=
3
2
.
故答案为:
3
2
.
考点梳理
考点
分析
点评
圆周角定理;坐标与图形性质;含30度角的直角三角形;特殊角的三角函数值.
首先设⊙A与x轴的另一个交点为D,连接CD,根据直角对的圆周角是直径,即可得CD是直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,可得∠OBC=∠ODC,继而可求得答案.
此题考查了圆周角定理、勾股定理以及三角函数的定义.注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.