试题
题目:
如图,⊙O为四边形ABCD的外接圆,圆心O在AD上,OC∥AB.
(1)求证:AC平分∠DAB;
(2)若AC=8,AC:CD=2:1,试求⊙O的半径.
答案
(1)证明:∵OC∥AB,
∴∠OCA=∠CAB,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠OAC=∠CAB,
即AC平分∠DAB;
(2)解∵AD是⊙O的直径,
∴∠ACD=90°,
∵AC=8,AC:CD=2:1,
∴CD=4,
在Rt△ACD中,AD=
AC
2
+
CD
2
=4
5
,
∴OA=
1
2
AD=2
5
,
∴⊙O的半径为2
5
.
(1)证明:∵OC∥AB,
∴∠OCA=∠CAB,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠OAC=∠CAB,
即AC平分∠DAB;
(2)解∵AD是⊙O的直径,
∴∠ACD=90°,
∵AC=8,AC:CD=2:1,
∴CD=4,
在Rt△ACD中,AD=
AC
2
+
CD
2
=4
5
,
∴OA=
1
2
AD=2
5
,
∴⊙O的半径为2
5
.
考点梳理
考点
分析
点评
圆周角定理;平行线的性质;勾股定理.
(1)由OC∥AB,根据平行线的性质,即可得∠OCA=∠CAB,又由OA=OC,根据等边对等角,即可得∠OAC=∠OCA,则可证得AC平分∠DAB;
(2)由圆心O在AD上,可知AD是直径,根据圆周角定理,即可得∠ACD=90°,然后利用勾股定理即可求得答案.
此题考查了圆周角定理、平行线的性质、等腰三角形的性质以及勾股定理.此题比较简单,解题的关键是数形结合思想的应用,注意掌握半圆(或直径)所对的圆周角是直角定理的应用.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.