试题
题目:
如图,AB是⊙○的直径,CD是⊙○的弦.若∠BAD=21°,则∠ACD的大小为( )
A.21°
B.59°
C.69°
D.79°
答案
C
解:∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠BAD=21°,
∴∠ABD=90°-∠BAD=69°,
∴∠ACD=∠ABD=69°.
故选C.
考点梳理
考点
分析
点评
圆周角定理.
由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB的度数,又由∠BAD=21°,求得∠ABD的度数,然后利用在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ACD的大小.
此题考查了圆周角定理.此题难度不大,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.