试题

题目:
青果学院如图,四边形ABCD内接于⊙O,∠BOD=130°,则∠BCD的度数为(  )



答案
C
解:∵弧BCD对的圆周角是∠A,圆心角是∠BOD,∠BOD=130°,
∴∠A=
1
2
∠BOD=65°,
∵A、B、C、D四点共圆,
∴∠A+∠BCD=180°,
∴∠BCD=115°,
故选C.
考点梳理
圆周角定理.
根据圆周角定理求出∠A的度数,根据圆内接四边形的性质得出∠A+∠BCD=180°,代入求出即可.
本题考查了圆周角定理,圆内接四边形的性质的应用,关键是求出∠A的度数和得出∠A+∠BCD=180°.
找相似题