试题
题目:
已知AB是⊙O的直径,弦AC与BD交于点P,若CD=5,AB=13,则cos∠APD等于( )
A.
5
13
B.
12
13
C.
5
12
D.
5
7
答案
A
解:连接AD.
∵AB为⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角).
∵∠BAP=∠CDP(同弧所对的圆周角相等),∠APB=∠DPC(对顶角相等),
∴△APB∽△DPC,
∴PD:PA=CD:AB=5:13(相似三角形的对应边成比例),
∴cos∠APD=PD:PA=
5
13
.
故选A.
考点梳理
考点
分析
点评
专题
圆周角定理;相似三角形的判定与性质;锐角三角函数的定义.
连接AD.根据直径所对的圆周角是直角,得∠ADB=90°;根据两角对应相等,两三角形相似得△APB∽△DPC,则PD:PA=CD:AB=5:13;再根据锐角三角函数的定义求得cos∠APD的值.
此题综合运用了圆周角定理的推论、相似三角形的判定和性质、以及锐角三角函数的概念.解答该题的关键是通过作辅助线AD构建直角三角形ABD,在直角三角形中利用锐角三角函数的定义求cos∠APD的值.
证明题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.