试题

题目:
青果学院如图,点A是半径为3的⊙O内一定点,已知OA=
3
,P为⊙O上一点,当∠OPA取最大值时,则sin∠OPA=(  )



答案
D
解:作OH⊥PA于H,如图,青果学院
∵sin∠OPA=
OH
OP

∵OP=3,
∴当OH最大时,即OH=OA=
3
时,∠OPA最大,sin∠OPA最大,

此时sin∠OPA=
OH
OP
=
3
3


故选D.
考点梳理
垂径定理;圆周角定理;锐角三角函数的定义.
作OH⊥PA于H,根据正弦的定义得到sin∠OPA=
OH
OP
,由于OP=3,则当OH最大时,即OH=OA=
3
时,∠OPA最大,所以sin∠OPA=
OH
OP
=
3
3
本题考查了垂径定理:垂直于弦的直径平分弦,且平分弦所对的弧.也考查了锐角三角函数.
压轴题.
找相似题