试题
题目:
(2002·金华)试比较下面两个几何图形的异同,请分别写出它们的两个相同点和两个不同点.例如:相同点
:正方形的对角线相等,正五边形的对角线也相等.不同点:正方形是中心对称图形,正五边形不是中心对称图形.
相同点:(1)
都是轴对称图形
都是轴对称图形
;(2)
都有外接圆和内切圆
都有外接圆和内切圆
;
不同点:(1)
内角和不同
内角和不同
;(2)
对角线的条数不同
对角线的条数不同
.
答案
都是轴对称图形
都有外接圆和内切圆
内角和不同
对角线的条数不同
解:相同点不同点
①都有相等的边.①边数不同;
②都有相等的内角.②内角的度数不同;
③都有外接圆和内切圆.③内角和不同;
④都是轴对称图形.④对角线条数不同;
⑤对称轴都交于一点.⑤对称轴条数不同.
考点梳理
考点
分析
点评
正多边形和圆;轴对称图形;中心对称图形.
此题要了解正多边形的有关性质:正多边形的各边相等,正多边形的各个角相等,所有的正多边形都是轴对称图形,偶数边的正多边形又是中心对称图形.根据正多边形的性质进行分析它们的相同和不同之处.
一个是奇数边的正多边形,一个是偶数边的正多边形.此题的答案不唯一,只要抓住正多边形的性质进行回答均可.
找相似题
(2013·自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是( )
某校科艺节汇报演出活动中,5个舞蹈演员,每人手执一把大小形状都相同扇子,扇子完全展开后的半径OA为24cm,三把扇子完全展开刚好组成了图2所示的一朵圆形的花,然后又一变化,五把扇子组成了图3所示的五角星的形状,求图3所示五角星中∠α的角度.
如图1,请求圆内接正五边形的中心角∠AOB=
72
72
°,及∠ACB=
36
36
°,如图2,请求圆内接正六边形的中心角∠AOB=
60
60
°,及∠ACB=
30
30
°
探究:正n边形每条边所对的中心角∠AOB=
360
n
360
n
°,及∠ACB=
180
n
180
n
°(用n表示)
如图一,有一个圆O和两个正六边形T
1
,T
2
.T
1
的六个顶点都在圆周上,T
2
的六条边都和圆O相切(我们称T
1
,T
2
分别为圆O的内接正六边形和外切正六边形).
(1)请你在备用图中画出圆O的内接正六边形,并简要写出作法;
(2)设圆O的半径为R,求T
1
,T
2
的边长(用含R的式子表示);
(3)设圆O的半径为R,求图二中阴影部分的面积(用含R的式子表示)
如图所示,点A坐标为(0,3),⊙A半径为1,点B在x轴上.
(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;
(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.