试题
题目:
下面给出五个命题
(1)正多边形都有内切圆和外接圆,且这两个圆是同心圆;
(2)各边相等的圆外切多边形是正多边形
(3)各角相等的圆内接多边形是正多边形
(4)正多边形既是轴对称图形又是中心对称图形
(5)正n边形的中心角
a
n
=
360°
n
,且与每一个外角相等
其中真命题有( )
A.2个
B.3个
C.4个
D.5个
答案
A
解:(1)正多边形都有内切圆和外接圆,且这两个圆是同心圆,圆心是正多边形的中心,正确;
(2)各边相等的圆外切多边形的角不一定相等,故不一定是正多边形,故错误;
(3)圆内接矩形,各角相等,但不是正多边形,故错误;
(4)边数是偶数的正多边形既是轴对称图形又是中心对称图形,而边数是奇数的多边形是轴对称图形,不是中心对称图形;
(5)正n边形的中心角
a
n
=
360°
n
,且与每一个外角相等.
故正确的是(1)(5).共有2个.
故选A.
考点梳理
考点
分析
点评
专题
正多边形和圆;命题与定理;轴对称图形;中心对称图形.
根据正多边形的性质,以及正多边形与圆的关系即可作出判断.
本题主要考查了正多边形与圆的关系,以及正多边形的中心角的计算,都是需要熟记的内容.
综合题.
找相似题
(2013·自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是( )
某校科艺节汇报演出活动中,5个舞蹈演员,每人手执一把大小形状都相同扇子,扇子完全展开后的半径OA为24cm,三把扇子完全展开刚好组成了图2所示的一朵圆形的花,然后又一变化,五把扇子组成了图3所示的五角星的形状,求图3所示五角星中∠α的角度.
如图1,请求圆内接正五边形的中心角∠AOB=
72
72
°,及∠ACB=
36
36
°,如图2,请求圆内接正六边形的中心角∠AOB=
60
60
°,及∠ACB=
30
30
°
探究:正n边形每条边所对的中心角∠AOB=
360
n
360
n
°,及∠ACB=
180
n
180
n
°(用n表示)
如图一,有一个圆O和两个正六边形T
1
,T
2
.T
1
的六个顶点都在圆周上,T
2
的六条边都和圆O相切(我们称T
1
,T
2
分别为圆O的内接正六边形和外切正六边形).
(1)请你在备用图中画出圆O的内接正六边形,并简要写出作法;
(2)设圆O的半径为R,求T
1
,T
2
的边长(用含R的式子表示);
(3)设圆O的半径为R,求图二中阴影部分的面积(用含R的式子表示)
如图所示,点A坐标为(0,3),⊙A半径为1,点B在x轴上.
(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;
(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.