试题

题目:
青果学院(2012·黄陂区模拟)如图所示,△ABC是⊙O的内接正三角形,四边形DEFG是⊙O的内接正方形,EF∥BC,则∠AOF为(  )



答案
C
青果学院解:连接OG,
∵⊙O是△ABC的外接圆,
∴AO⊥EF,
∵EF∥BC,
∴AO⊥EF,
∵四边形DEFG是正方形,
∴DG∥EF,
∴AO⊥DG,
∴AO是DG的垂直平分线,
∴∠AOG=360°×
1
8
=45°,
∵四边形DEFG是正方形,
∴∠GOF=90°,
∴∠AOF=∠AOG+∠GOF=45°+90°=135°.
故选C.
考点梳理
正多边形和圆.
由⊙O是△ABC的外接圆可知AO⊥BC,根据EF∥BC,四边形DEFG是正方形可知DG∥EF,故AO⊥DG,故AO是DG的垂直平分线,故可求出∠AOG的度数,由圆内接正多边形的性质求出∠GOF的度数,进而可得出结论.
本题考查的是正多边形和圆,根据题意作出辅助线,得出AO是DG的垂直平分线是解答此题的关键.
探究型.
找相似题