试题
题目:
(1997·南京)如图,正六边形的螺帽的边长为a,这个搬手的开口b最小应是(用含a的代数式表示)( )
A.
3
a
B.
1
2
a
C.
3
2
a
D.
3
3
a
答案
A
解:取此正六边形的中心O,连接OC,OD,过点O作OH⊥CD于点H,
则∠COD=60°,
∴∠COH=
1
2
∠COD=30°,CH=DH=
1
2
CD=
1
2
a,
∴OC=2CH=a,
在Rt△OCH中,OH=
O
C
2
-C
H
2
=
3
2
a,
∴b=2OH=
3
a.
故选A.
考点梳理
考点
分析
点评
专题
正多边形和圆.
首先取此正六边形的中心O,连接OC,OD,过点O作OH⊥CD于点H,易求得OH的长,继而求得这个搬手的开口b最小值.
此题考查了正多边形与圆的知识.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
压轴题.
找相似题
(2013·自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是( )
某校科艺节汇报演出活动中,5个舞蹈演员,每人手执一把大小形状都相同扇子,扇子完全展开后的半径OA为24cm,三把扇子完全展开刚好组成了图2所示的一朵圆形的花,然后又一变化,五把扇子组成了图3所示的五角星的形状,求图3所示五角星中∠α的角度.
如图1,请求圆内接正五边形的中心角∠AOB=
72
72
°,及∠ACB=
36
36
°,如图2,请求圆内接正六边形的中心角∠AOB=
60
60
°,及∠ACB=
30
30
°
探究:正n边形每条边所对的中心角∠AOB=
360
n
360
n
°,及∠ACB=
180
n
180
n
°(用n表示)
如图一,有一个圆O和两个正六边形T
1
,T
2
.T
1
的六个顶点都在圆周上,T
2
的六条边都和圆O相切(我们称T
1
,T
2
分别为圆O的内接正六边形和外切正六边形).
(1)请你在备用图中画出圆O的内接正六边形,并简要写出作法;
(2)设圆O的半径为R,求T
1
,T
2
的边长(用含R的式子表示);
(3)设圆O的半径为R,求图二中阴影部分的面积(用含R的式子表示)
如图所示,点A坐标为(0,3),⊙A半径为1,点B在x轴上.
(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;
(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.