试题
题目:
(2007·天津)将边长为3cm的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连接这个正六边形的各边中点,又形成一个新的正六边形,则这个新的正六边形的面积等于( )
A.
3
3
4
cm
2
B.
9
3
8
cm
2
C.
9
3
4
cm
2
D.
27
3
8
cm
2
答案
B
解:∵新的正六边形有三个顶点在正三角形的三边上,且是三边的中点,
∴连接AH,CF,BN,可以看出新的正六边形EFGHMN的面积是六个小正三角形的面积之和,
∴小正三角形的边长为
3
2
cm,
∴每个小正三角形的面积是
3
3
16
cm
2
,
∴新的正六边形的面积等于
3
3
16
×6=
9
3
8
.
故选B.
考点梳理
考点
分析
点评
专题
等边三角形的性质;正多边形和圆.
可画出草图解题,新的正六边形有三个顶点在正三角形的三边上,且是三边的中点,连接正三角形的顶点与它对边的中点,可以看出新的正六边形的面积六个小正三角形的面积之和.
此题主要考查了正三角形的性质及三角形的面积公式.
压轴题.
找相似题
(2013·自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是( )
某校科艺节汇报演出活动中,5个舞蹈演员,每人手执一把大小形状都相同扇子,扇子完全展开后的半径OA为24cm,三把扇子完全展开刚好组成了图2所示的一朵圆形的花,然后又一变化,五把扇子组成了图3所示的五角星的形状,求图3所示五角星中∠α的角度.
如图1,请求圆内接正五边形的中心角∠AOB=
72
72
°,及∠ACB=
36
36
°,如图2,请求圆内接正六边形的中心角∠AOB=
60
60
°,及∠ACB=
30
30
°
探究:正n边形每条边所对的中心角∠AOB=
360
n
360
n
°,及∠ACB=
180
n
180
n
°(用n表示)
如图一,有一个圆O和两个正六边形T
1
,T
2
.T
1
的六个顶点都在圆周上,T
2
的六条边都和圆O相切(我们称T
1
,T
2
分别为圆O的内接正六边形和外切正六边形).
(1)请你在备用图中画出圆O的内接正六边形,并简要写出作法;
(2)设圆O的半径为R,求T
1
,T
2
的边长(用含R的式子表示);
(3)设圆O的半径为R,求图二中阴影部分的面积(用含R的式子表示)
如图所示,点A坐标为(0,3),⊙A半径为1,点B在x轴上.
(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;
(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.