试题

题目:
青果学院如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线y=
8
x
(x>0)
于P点,连OP,则OP2-OA2=
16
16

答案
16

解:∵直线y=x+b与双曲线y=
8
x
(x>0)
交于点P,设P点的坐标(x,y),
∴x-y=-b,xy=8,
而直线y=x+b与x轴交于A点,
∴OA=b.
又∵OP2=x2+y2,OA2=b2
∴OP2-OA2=x2+y2-b2=(x-y)2+2xy-b2=16.
故答案为:16.
考点梳理
反比例函数与一次函数的交点问题.
由直线y=x+b与双曲线y=
8
x
(x>0)
交于点P可知:x-y=-b,xy=8,又OP2=x2+y2,OA2=b2,由此即可求出OP2-OA2的值.
此题主要考查一次函数与反比例函数的图象及其性质,同时也考查了图象交点坐标与解析式的关系,难度较大.
综合题;压轴题;数形结合.
找相似题