试题
题目:
(2011·嘉兴)如图,已知直线y=-2x经过点P(-2,a),点P关于y轴的对称点P′在反比例函数
y=
k
x
(
k≠0)的图象上.
(1)求a的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.
答案
解:(1)把(-2,a)代入y=-2x中,得a=-2×(-2)=4,
∴a=4;
(2)∵P点的坐标是(-2,4),
∴点P关于y轴的对称点P′的坐标是(2,4);
(3)把P′(2,4)代入函数式y=
k
x
,得
4=
k
2
,
∴k=8,
∴反比例函数的解析式是y=
8
x
.
解:(1)把(-2,a)代入y=-2x中,得a=-2×(-2)=4,
∴a=4;
(2)∵P点的坐标是(-2,4),
∴点P关于y轴的对称点P′的坐标是(2,4);
(3)把P′(2,4)代入函数式y=
k
x
,得
4=
k
2
,
∴k=8,
∴反比例函数的解析式是y=
8
x
.
考点梳理
考点
分析
点评
专题
待定系数法求反比例函数解析式;一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.
(1)把(-2,a)代入y=-2x中即可求a;
(2)坐标系中任一点关于y轴对称的点的坐标,其中横坐标等于原来点横坐标的相反数,纵坐标不变;
(3)把P′代入y=
k
x
中,求出k,即可得出反比例函数的解析式.
本题考查了待定系数法球反比例函数解析式,一次函数图象上点的坐标特征,关于x轴、y轴对称点的坐标.知道经过函数的某点一定在函数的图象上,坐标系中任一点关于x轴、y轴的点的特征.
计算题.
找相似题
(2013·湘潭)如图,点P(-3,2)是反比例函数
y=
k
x
(k≠0)的图象上一点,则反比例函数的解析式( )
(2013·抚顺)如图,等边△OAB的边OB在x轴的负半轴上,双曲线
y=
k
x
过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为( )
(2012·内江)已知反比例函数
y=
k
x
的图象经过点(1,-2),则k的值为( )
(2011·邵阳)已知点(1,1)在反比例函数y=
k
x
(k为常数,k≠0)的图象上,则这个反比例函数的大致图象是( )
(2011·葫芦岛)如图,直角坐标系中有四个点,其中的三点在同一反比例函数的图象上,则不在这个图象上的点是( )