试题
题目:
(2013·老河口市模拟)如图,在直角坐标平面内,反比例函数
y=
k
x
的图象经过点A(2,3),B(a,b),其中a>2.过点B作y轴垂线,垂足为C,连结AB、AC、BC.
(1)求反比例函数的解析式;
(2)若△ABC的面积为6,求点B的坐标.
答案
解:(1)由题意得,k=xy=2×3=6
∴反比例函数的解析式为
y=
6
x
.
(2)作AD⊥BC于D,则D(2,b)
∵反比例函数
y=
6
x
的图象经过点B(a,b)
∴
b=
6
a
∴AD=3-
6
a
.
∴
S
△ABC
=
1
2
a(3-
6
a
)=6
解得a=6…(5分)
∴
b=
6
a
=1
∴B(6,1).
解:(1)由题意得,k=xy=2×3=6
∴反比例函数的解析式为
y=
6
x
.
(2)作AD⊥BC于D,则D(2,b)
∵反比例函数
y=
6
x
的图象经过点B(a,b)
∴
b=
6
a
∴AD=3-
6
a
.
∴
S
△ABC
=
1
2
a(3-
6
a
)=6
解得a=6…(5分)
∴
b=
6
a
=1
∴B(6,1).
考点梳理
考点
分析
点评
待定系数法求反比例函数解析式;反比例函数系数k的几何意义.
(1)把A的坐标代入反比例函数的解析式即可求得;
(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程求得b的值,进而求得a的值.
此题比较简单,考查的是用待定系数法求反比例函数的解析式,正确利用a,b表示出BC,AD的长度是关键.
找相似题
(2013·湘潭)如图,点P(-3,2)是反比例函数
y=
k
x
(k≠0)的图象上一点,则反比例函数的解析式( )
(2013·抚顺)如图,等边△OAB的边OB在x轴的负半轴上,双曲线
y=
k
x
过OA的中点,已知等边三角形的边长是4,则该双曲线的表达式为( )
(2012·内江)已知反比例函数
y=
k
x
的图象经过点(1,-2),则k的值为( )
(2011·邵阳)已知点(1,1)在反比例函数y=
k
x
(k为常数,k≠0)的图象上,则这个反比例函数的大致图象是( )
(2011·葫芦岛)如图,直角坐标系中有四个点,其中的三点在同一反比例函数的图象上,则不在这个图象上的点是( )