试题
题目:
(2004·郑州)如图,A、B、C、D是⊙O上的四点,且D是弧AB的中点,CD交OB于E,∠AOB=100°,∠OBC=55°,那么∠OEC=
80
80
度.
答案
80
解:连接OD,
∵D是弧AB的中点,∠AOB=100°,
∴∠BOD=
∠AOB
2
=50°,
∴∠BCD=
∠BOD
2
=25°,
∴∠OEC=∠OBC+∠C=55°+25°=80°.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系;三角形内角和定理;圆周角定理.
根据等弧所对的圆心角相等以及圆周角定理,得∠BCD=100°÷4=25°.再根据三角形的一个外角等于和它不相邻的两个内角的和,得∠OEC=55°+25°=80°.
综合运用了圆周角定理以及三角形的内角和定理的推论.
压轴题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.