试题
题目:
(2008·宜宾)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8
8
.
答案
8
解:∵∠BAC=120°,AB=AC=4,
∴∠C=30°,
∴∠BOA=60°.
又∵OA=OB,
∴△AOB是正三角形.
∴OB=AB=4,
∴BD=8.
考点梳理
考点
分析
点评
垂径定理;圆周角定理.
根据BD是直径,易证△ABD为直角三角形;∠D=∠C=30°.则BD=2AB=8.
本题运用了圆周角定理的推论,直径所对的圆心角是直角.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.