试题
题目:
如图,已知AB、AC是⊙O的两条弦,且AB=AC,若∠BOC=100°,则∠BAO=
25
25
°.
答案
25
解:∵AB=AC,
而OA=OA,OB=OC,
∴△OAB≌△OAC,
∴∠AOB=∠AOC,
又∵∠AOB+∠AOC+∠BOC=360°,∠BOC=100°,
∴∠AOB+∠AOC=360°-100°=260°,
∴∠AOB=
1
2
×260°=130°,
又∵OB=OA,
∴∠BAO=∠B,
而∠BAO+∠B+∠AOB=180°,
∴∠BAO=
1
2
(180°-130°)=25°.
故答案为25°.
考点梳理
考点
分析
点评
专题
圆周角定理.
由AB=AC,得到△OAB≌△OAC,则AOB=∠AOC,而∠BOC=100°,∠AOB+∠AOC+∠BOC=360°,可求出∠ABO,由OB=OA,得∠BAO=∠B,利用三角形的内角和定理即可求出∠BAO.
本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了三角形的内角和定理.
计算题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.