试题
题目:
A,B,C,D,E为圆周上顺次五点,AB=BC=CD,∠BAD=50°,则∠AED=
75°
75°
.
答案
75°
解:连AC,AD,如图,
∵AB=BC=CD,
∴
AB
=
BC
=
CD
,
∴∠BAD=∠2=2∠1,
而∠BAD=50°,
∴∠2=50°,∠1=25°,
∴∠3=180°-∠2-∠1=180°-50°-25°=105°,
∴∠AED=180°-105°=75°.
故答案为75°.
考点梳理
考点
分析
点评
专题
圆周角定理.
连AC,AD,由AB=BC=CD,得
AB
=
BC
=
CD
,则∠BAD=∠2=2∠1,而∠BAD=50°,可求出∠2=50°,∠1=25°,再利用三角形的内角和可求出∠3,然后根据圆内接四边形的对角互补的性质即可得到∠AED.
本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了圆内接四边形的对角互补的性质.
计算题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.