试题
题目:
(2011·温州)如图,AB是⊙O的直径,点C,D都在⊙O上,连接CA,CB,DC,DB.已知∠D=30°,BC=3,则AB的长是
6
6
.
答案
6
解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠D=30°,
∴∠A=∠D=30°,
∵BC=3,
∴AB=6.
故答案为:6.
考点梳理
考点
分析
点评
专题
圆周角定理;含30度角的直角三角形.
利用直径所对的圆周角是直角得到直角三角形,然后利用同弧所对的圆周角相等,在解直角三角形即可.
本题考查了圆周角定理及直角三角形的性质.考查了同学们利用角平分线的性质、圆周角定理、弦切角定理解决问题的能力,有利于培养同学们的发散思维能力.
计算题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.