试题
题目:
(2010·百色)如图1,AB是⊙O的直径,BC⊥AB,垂足为B,AC交⊙O于点D.
(1)用尺规作图:过点D作DE⊥BC,垂足为E(保留作图痕迹,不写作法和证明);
(2)在(1)的条件下,求证:△BED∽△DEC;
(3)若点D是AC的中点(如图2),求sin∠OCB的值.
答案
(1)解:如图,
(2)证明:∵AB是⊙O的直径,
∴∠ADB=∠CDB=90°.
∴∠CDE+∠EDB=90°.
又∵DE⊥BC,
∴∠CED=∠DEB=90°,
∴∠CDE+∠C=90°.
∴∠C=∠EDB.
∴△BED∽△DEC.
(3)解:∵∠ADB=90°,D是AC的中点,
∴BD垂直平分AC.
∴BC=AB=2OB.
设OB=k,则BC=2k,
∴OC=
k
2
+
(2k)
2
=
5
k.
∴sin∠OCB=
OB
OC
=
k
5
k
=
5
5
.
(1)解:如图,
(2)证明:∵AB是⊙O的直径,
∴∠ADB=∠CDB=90°.
∴∠CDE+∠EDB=90°.
又∵DE⊥BC,
∴∠CED=∠DEB=90°,
∴∠CDE+∠C=90°.
∴∠C=∠EDB.
∴△BED∽△DEC.
(3)解:∵∠ADB=90°,D是AC的中点,
∴BD垂直平分AC.
∴BC=AB=2OB.
设OB=k,则BC=2k,
∴OC=
k
2
+
(2k)
2
=
5
k.
∴sin∠OCB=
OB
OC
=
k
5
k
=
5
5
.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;圆周角定理;解直角三角形.
(1)根据过直线外一点作已知直线的垂线的方法进行求作;
(2)根据直径所对的圆周角是直角,得∠ADB=90°,则∠CDB=∠ADB=90°,再根据等角的余角相等,证明∠C=∠EDB,从而根据两角对应相等,就可证明三角形相似;
(3)在Rt△OBC中,只要找到OB与OC的关系即可.由于∠ADB=90°,D是AC的中点,所以BD垂直平分AC,则BC=AB=2OB;设OB=k,则BC=2k,根据勾股定理求得OC的长,从而求解.
此图综合考查了作垂线的方法、直径所对的圆周角是直角、相似三角形的判定、线段垂直平分线的性质、勾股定理以及锐角三角函数的求法.
计算题;作图题;证明题;压轴题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.