试题
题目:
(2007·咸宁)如图,AB是半圆O的直径,C为半圆上一点,E是BC的中点,AE交BC于点D,DF⊥AB于F,F为
垂足,连接CF.
(1)判断△CDF的形状,并证明你的结论;
(2)若AC=8,cos∠CAB=
4
5
,求线段BC和CD的长.
答案
解:(1)等腰三角形.
∵E是BC的中点,
∴∠CAE=∠BAE.
∵AB是半圆O的直径,DF⊥AB于F,
∴∠ACB=∠DFA=90.
又∵AD=AD,
∴△CDA≌△FDA.
∴CD=DF.
(2)∵AC=8,cos∠CAB=
4
5
,
∴BC=6.
根据勾股定理得:AB=10,
∵△CDA≌△FDA.
∴AC=AF=8,
∴FB=2,
设CD=DF=x,则BD=BC-CD=6-x,
根据勾股定理得:x
2
+2
2
=(6-x)
2
,
解得:x=
8
3
∴CD=
8
3
.
解:(1)等腰三角形.
∵E是BC的中点,
∴∠CAE=∠BAE.
∵AB是半圆O的直径,DF⊥AB于F,
∴∠ACB=∠DFA=90.
又∵AD=AD,
∴△CDA≌△FDA.
∴CD=DF.
(2)∵AC=8,cos∠CAB=
4
5
,
∴BC=6.
根据勾股定理得:AB=10,
∵△CDA≌△FDA.
∴AC=AF=8,
∴FB=2,
设CD=DF=x,则BD=BC-CD=6-x,
根据勾股定理得:x
2
+2
2
=(6-x)
2
,
解得:x=
8
3
∴CD=
8
3
.
考点梳理
考点
分析
点评
专题
等腰三角形的判定;圆周角定理;锐角三角函数的定义.
(1)易得∠CAE=∠BAE,∠ACB=∠DFC=90°,再加上公共边,可证得△CDA≌△FDA,即证CD=DF.
(2)利用cos∠CAB的值可求得BC长,设出CD=DF=x,根据勾股定理列出关于x的方程,求出方程的解即可得到CD的长.
本题考查了同弧所对的圆周角相等,直角三角形的三角函数,以及角平分线所截得的线段的对于比等知识点.
综合题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.