试题
题目:
如图,△ABC的角平分线AD的延长线交△ABC的外接圆于点E.下列四个结论:
①∠BAE=∠DBE;②△BAE∽△DBE;③△DBE∽△DAC;④DB:BA=DC:CA,其中正确的个数是( )
A.1
B.2
C.3
D.4
答案
D
解:∵△ABC的角平分线AD的延长线交△ABC的外接圆于点E,
∴弧BE=弧CE,
∴∠BAE=∠DBE,
故①正确;
∵∠BAE=∠DBE,∠E=∠E,
∴△BAE∽△DBE,
故②正确;
∵∠EBC=∠EAC,∠E=∠C,
∴△DBE∽△DAC,
故③正确;
∵△BAE∽△DBE,
∴DB:BA=DE:BE;
∵△DBE∽△DAC,
∴DE:BE=DC:BA,
∴DB:BA=DC:CA,
故④正确;
故选D.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;角平分线的定义;圆周角定理;三角形的外接圆与外心.
利用角平分线的定义得到两个圆周角相等,然后得到相等的弧,利用同弧所对的圆周角相等即可得到相等的圆周角,然后可以证明相似三角形并根据相似三角形得到对应边成比例.
本题考查了圆周角定理及相似三角形的判断与性质,题目中涉及的知识点比较多,但相对比较简单.
证明题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.