试题

题目:
青果学院已知AB为半圆的直径,弦AD、BC相交于M,点E在AM上,且∠CEM=∠B,AB=1,则cos∠AMC的值等于线段(  )的长.



答案
B
青果学院解:连接BD,CD,如图所示:
∵∠B和∠ADC都对
AC

∴∠B=∠ADC,又∠CEM=∠B,
∴∠CEM=∠ADC,
∴CE=CD,
∵AB为圆O的直径,
∴∠ADB=90°,
在Rt△MBD中,cos∠DMB=
DM
BM

∵∠AMC=∠DMB,
∴cos∠AMC=cos∠DMB=
DM
BM

∵∠ADC=∠B,∠CMD=∠AMB,
∴△CMD∽△AMB,
MD
MB
=
CD
AB
,又AB=1,
MD
MB
=CD,又CD=CE,
则cos∠AMC=
MD
MB
=CE.
故选B
考点梳理
相似三角形的判定与性质;圆周角定理;锐角三角函数的定义.
连接BD,CD,利用同弧所对的圆周角相等得到∠B=∠ADC,再由已知的∠CEM=∠B,利用等量代换得到一对角相等,利用等角对等边得到CE=CD,由AB为圆O的直径,利用直径所对的圆周角为直角得到∠ADB=90°,在直角三角形BDM中,利用锐角三角函数定义表示出cos∠DMB,由对顶角相等得到cos∠DMB=cos∠AMC,再由∠B=∠ADC及一对对顶角相等,利用两对对应角相等的两三角形相似,得到三角形CMD与三角形ABM相似,由相似得比例,可得出CD:AB即为cos∠AMC的值,将AB=1,CD=CE代入即可得到其值为CE,得到正确的选项.
此题考查了相似三角形的判定与性质,锐角三角函数定义,等腰三角形的判定,以及圆周角定理,熟练掌握相似三角形的判定与性质是解本题的关键.
计算题.
找相似题