试题
题目:
如图,AB是⊙O的直径,AD=DE,AE与BD交于点C,则图中与∠BCE相等的角有( )
A.1个
B.3个
C.5个
D.6个
答案
C
解:∵AD=DE,
∴OD⊥AE,∠EOD=∠AOD,
∵OA=OD,OD=OE,
∴∠OAD=∠ODA=
180°-∠AOD
2
,∠ODE=∠OED=
180°-∠DOE
2
,
∴∠OAD=∠ODA=∠ODE=∠OED,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DCA+∠DAC=90°,
∵∠ODA+∠DAC=90°,
∴∠DCA=∠ODA,
∵∠DCA=∠BCE,
∴∠BCE=∠DCA=∠OAD=∠ODA=∠ODE=∠OED.
故选C.
考点梳理
考点
分析
点评
圆周角定理;圆心角、弧、弦的关系.
由AD=DE,根据圆心角、弧,弦的关系,可得∠OAD=∠ODA=∠ODE=∠OED,OD⊥AE,又由AB是⊙O的直径,根据直径所对的圆周角是直角,易求得∠DCA=∠ODA,又由对顶角相等,即可求得答案.
此题考查了圆周角定理、等腰三角形的性质以及圆心角、弧,弦的关系.此题难度适中,注意掌握数形结合思想的应用.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.