答案
(1)证明:∵DE∥BC,∴∠ABC=∠E,
∵∠ADB,∠C都是AB所对的圆周角,
∴∠ADB=∠C,
又∠ABC=∠C,
∴∠ADB=∠E;
(2)证明:∵∠ADB=∠E,∠BAD=∠DAE,
∴△ADB∽△AED,
∴
=,
即AD
2=AB·AE,
∵∠ABC=∠C,
∴AB=AC,
∴AD
2=AC·AE;
(3)解:点D运动到弧BC中点时,△DBE∽△ADE.

∵DE∥BC,
∴∠EDB=∠DBC,
∴
=
∴∠DBC=∠EAD,
∴∠EDB=∠EAD,
又∵∠DEB=∠AED,
∴△DBE∽△ADE.
(1)证明:∵DE∥BC,∴∠ABC=∠E,
∵∠ADB,∠C都是AB所对的圆周角,
∴∠ADB=∠C,
又∠ABC=∠C,
∴∠ADB=∠E;
(2)证明:∵∠ADB=∠E,∠BAD=∠DAE,
∴△ADB∽△AED,
∴
=,
即AD
2=AB·AE,
∵∠ABC=∠C,
∴AB=AC,
∴AD
2=AC·AE;
(3)解:点D运动到弧BC中点时,△DBE∽△ADE.

∵DE∥BC,
∴∠EDB=∠DBC,
∴
=
∴∠DBC=∠EAD,
∴∠EDB=∠EAD,
又∵∠DEB=∠AED,
∴△DBE∽△ADE.