答案

(1)证明:连接PB,在PA上截取PE=PB,连接BE;
∵△ABC是等边三角形,∠ACB=∠APB,
∴∠ACB=∠APB=60°,AB=BC;
∴△BEP是等边三角形,BE=PE=PB;
∴∠ACB-∠EBC=∠APB-∠EBC=60°-∠EBC;
∴∠ABE=∠CBP;
∵在△ABE与CBP中,
,
∴△ABE≌△CBP;
∴AE=CP;
∴AP=AE+PE=PB+PC.
(2)解:由余弦定理知,PB
2+AP
2-AB
2=2PA·PB·cos∠APB;
PB
2+36-28=6AB,PB
2-6PB+8=0;
解得PB=4或PB=2;
∵PB<PC,
∴PB取2,
∴PC=4,PB=2.

(1)证明:连接PB,在PA上截取PE=PB,连接BE;
∵△ABC是等边三角形,∠ACB=∠APB,
∴∠ACB=∠APB=60°,AB=BC;
∴△BEP是等边三角形,BE=PE=PB;
∴∠ACB-∠EBC=∠APB-∠EBC=60°-∠EBC;
∴∠ABE=∠CBP;
∵在△ABE与CBP中,
,
∴△ABE≌△CBP;
∴AE=CP;
∴AP=AE+PE=PB+PC.
(2)解:由余弦定理知,PB
2+AP
2-AB
2=2PA·PB·cos∠APB;
PB
2+36-28=6AB,PB
2-6PB+8=0;
解得PB=4或PB=2;
∵PB<PC,
∴PB取2,
∴PC=4,PB=2.