试题
题目:
如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N,P、Q分别是弧AM、弧BM上一点(不与端点重合),已知∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠Q=∠PMN;③∠P+∠Q=180°;④PM=QM;⑤MN
2
=PN·QN.其中正确的个数有( )
A.1个
B.2个
C.3个
D.4个
答案
C
解:延长QN交圆O于C,延长MN交圆O于D,
如图∵MN⊥AB,∠MNP=∠MNQ,
则∠1=∠2,故①正确;
∵AB是⊙O的直径,MN⊥AB,
AM
=
DA
,
由∠1=∠2,∠ANC=∠2,
∴∠1=∠ANC,
得P,C关于AB对称,
PA
=
AC
,
PD
=
MC
,
∴∠Q=∠PMN,故②正确;
∵∠P+∠PMN<180°,
∴∠P+∠Q<180°,故③错误;
∵∠MNP=∠MNQ,∠Q=∠PMN,
∴△PMN∽△MQN,
∴MN
2
=PN·QN,PM不一定等于MQ;
故④错误,⑤正确.
故选C.
考点梳理
考点
分析
点评
圆周角定理;垂径定理;相似三角形的判定与性质.
利用等角的余角相等得到①对.利用垂径定理,同弧所对的圆周角相等得②对.利用三角形内角和定理得③错.利用三角形相似得④错,⑤对.
此题考查了垂径定理、圆周角定理、相似三角形的判定与性质以及等腰三角形的性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.