试题
题目:
(1999·广州)如图,已知AB是⊙O的直径,点D在弦AC上,DE⊥AB于E.
求证:AD·AC=AE·AB.
答案
证明:连接BC,(2分)
∵AB是⊙O的直径,
∴∠ACB=90°,(4分)
∵DE⊥AB,
∴∠AED=90°,
又∵∠DAE=∠BAC,
∴△DAE∽△BAC,(8分)
∴
AD
AB
=
AE
AC
,(9分)
∴AD·AC=AE·AB.(10分)
证明:连接BC,(2分)
∵AB是⊙O的直径,
∴∠ACB=90°,(4分)
∵DE⊥AB,
∴∠AED=90°,
又∵∠DAE=∠BAC,
∴△DAE∽△BAC,(8分)
∴
AD
AB
=
AE
AC
,(9分)
∴AD·AC=AE·AB.(10分)
考点梳理
考点
分析
点评
专题
圆周角定理;相似三角形的判定与性质.
先连接BC,构造相似三角形,△ADE和△ABC,由AB是直径,可得∠ACB=90°,而DE⊥AB,∠AED=90°,再加上一个公共角,那么两组对应角相等,两三角形相似.再有相似三角形的性质可得比例线段,从而得证.
本题利用了直径所对的圆周角是直角、相似三角形的判定和性质等知识.
证明题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.