试题
题目:
(2012·鞍山二模)已知:在△ABC中,以AC边为直径的⊙O交BC于点D,在劣弧
AD
上取一点E使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H.
求证:AC⊥BH.
答案
证明:连接AD,
∵∠DAC=∠DEC,∠EBC=∠DEC,
∴∠DAC=∠EBC,
∵AC是⊙O的直径,
∴∠ADC=90°,
∴∠DAC+∠DCA=90°,
∴∠EBC+∠DCA=90°,
∴∠BGC=180°-(∠EBC+∠DCA)=180°-90°=90°,
∴AC⊥BH.
证明:连接AD,
∵∠DAC=∠DEC,∠EBC=∠DEC,
∴∠DAC=∠EBC,
∵AC是⊙O的直径,
∴∠ADC=90°,
∴∠DAC+∠DCA=90°,
∴∠EBC+∠DCA=90°,
∴∠BGC=180°-(∠EBC+∠DCA)=180°-90°=90°,
∴AC⊥BH.
考点梳理
考点
分析
点评
专题
圆周角定理.
连接AD,由圆周角定理可知∠DAC=∠DEC,再由∠EBC=∠DEC可得出∠DAC=∠EBC,根据AC是⊙O的直径,
知∠ADC=90°,故可得出∠EBC+∠DCA=90°,由三角形内角和定理得出∠BGC=180°-(∠EBC+∠DCA)=180°-90°=90°,故可得出结论.
本题考查的是圆周角定理,在解答此类题目时往往用到三角形的内角和是180°这一隐藏条件.
证明题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.