试题
题目:
半径为2cm 的⊙O中有长为2
3
cm的弦AB,则弦AB所对的圆周角度数为( )
A.60
0
B.90
0
C.60°或120°
D.45°或90°
答案
C
解:连接OA,做OD⊥AB,
∵OA=2cm,AB=2
3
cm,
∴AD=BD=
3
,
∴AD:OA=
3
:2,
∴∠AOD=60°,
∴∠AOB=120°,
∴∠AMB=60°,
∴∠ANB=120°.
∴弦AB所对的圆周角度数为60°或120°.
故选C.
考点梳理
考点
分析
点评
圆周角定理;垂径定理.
首先根据题意画出图形,作OD⊥AB,通过垂径定理,即可推出∠AOD的度数,求得∠AOB的度数,然后根据圆周角定理,即可推出∠AMB和∠ANB的度数
本题主要考查圆周角定理、垂径定理,关键在于根据题意正确的画出图形,运用圆周角定理和垂径定理认真的进行分析.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.