试题
题目:
如图,AB是⊙O的直径,∠DCB=15°,则∠ABD=( )°.
A.65
B.75
C.85
D.45
答案
B
解:连接AC,
∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠ACD与∠ABD都为
AD
所对的圆周角,
∴∠ACD=∠ABD,又∠DCB=15°,
则∠ABD=∠ACD=∠ACB-∠DCB=90°-15°=75°.
故选B.
考点梳理
考点
分析
点评
专题
圆周角定理.
连接AC,由直径所对的圆周角为直角得到∠ACB=90°,又根据同弧所对的圆周角相等得到∠ABD=∠ACD,而∠ACD=∠ACB-∠DCB,即可求出∠ABD的度数.
此题考查了圆周角定理,圆周角定理为直径所对的圆周角相等,且为直角;同弧所对的圆周角都相等,利用了数形结合的思想,在圆中遇到直径,常常连接出直径所对的圆周角,利用圆周角定理来解决问题,比如本题中连接AC,构造直角三角形.熟练掌握圆周角定理是解本题的关键.
计算题.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.