试题
题目:
如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BD=2,连接CD,求BC的长.
答案
解:在⊙O中,∵∠A=45°,∠D=45°,
∵BD为⊙O的直径,
∴∠BCD=90°,
∴△BCD是等腰直角三角形,
∴BC=BD·sin45°,
∵BD=2,
∴
BC=2×
2
2
=
2
.
解:在⊙O中,∵∠A=45°,∠D=45°,
∵BD为⊙O的直径,
∴∠BCD=90°,
∴△BCD是等腰直角三角形,
∴BC=BD·sin45°,
∵BD=2,
∴
BC=2×
2
2
=
2
.
考点梳理
考点
分析
点评
圆周角定理;勾股定理;等腰直角三角形;锐角三角函数的定义.
先根据圆周角定理可求出∠D=45°,∠BCD=90°,再根据三角形内角和定理可知△BCD是等腰直角三角形,由锐角三角函数的定义即可求出BC的长.
本题主要考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,关键是求出△BCD是等腰直角三角形.
找相似题
已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,
BD
=
DE
,连接AD,求证:△ABD≌△ACD.
如图,AB是⊙O的直径,点C在⊙O上,AB=6,AC=5,求tanA的值.
如图,CD与AB是⊙O内两条相交的弦,且AB为⊙O的直径,CE⊥AB于点E,CE=5,连接AC、BD.
(1)若
sinD=
5
13
,则cosA=
12
13
12
13
;
(2)在(1)的条件下,求BE的长.
如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠CEB=100°.求∠ADC的度数.
如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.
求∠EBC的度数.