试题

题目:
若一个圆的内接正方形的边心距为
2
,则其内接正三角形的边心距为
1
1

答案
1

青果学院解:过点O作OC⊥AB于点D,
∵一个圆的内接正方形的边心距为
2

∴CO=BC=
2

∴BO=2,
∴AO=2,
∴∠OAD=30°,
∴DO=
1
2
AO=1.
则其内接正三角形的边心距为1.
故答案为:1.
考点梳理
正多边形和圆.
利用正多边形的性质得出圆的半径,进而得出其内接正三角形的边心距.
此题主要考查了正多边形的性质,根据已知得出外接圆的半径是解题关键.
找相似题