试题

题目:
青果学院如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是
6
6
边形.
答案
6

青果学院解:连接QO,PO,
∵QO=PO,
∴∠OPQ=∠OQP,
∵∠PMQ=40°,
∴∠POQ=80°,
∴∠OPQ+∠OQP=180°-80°=100°,
∴∠OPQ=∠OQP=50°,
∴∠A+∠APO=∠POM=10°+50°=60°,
∵PO=OM,
∴△POM是等边三角形,
∴PM=OP=OM,
∴以PM为边作圆的内接正多边形,则这个正多边形是正六边形.
故答案为:6.
考点梳理
正多边形和圆;圆周角定理.
首先根据圆周角定理得出∠POQ=80°,进而利用等腰三角形的性质得出∠OPQ=∠OQP,再由外角的性质得出∠A+∠APO=∠POM=10°+50°=60°,即可得出△POM是等边三角形,再由正六边形的性质得出答案.
此题主要考查了正六边形的性质以及圆周角定理和外角的性质等知识,根据已知得出△POM是等边三角形是解题关键.
找相似题