试题
题目:
(2002·浙江)如图,G是正六边形ABCDEF的边CD的中点,连接AG交CE于点M,则GM:MA=
1:6
1:6
.
答案
1:6
解:延长CE交AF的延长线于H,延长DE交AF延长线于L;
∵∠AFE=∠FED=∠CDE=
180
°
×(6-2)
6
=120°,
∴∠LFE=∠FEL=180°-120°=60°,
∴AF=EF=FL=EL;
∵∠HLE是△EFL的外角,
∴∠HLE=∠LFE+∠FEL=120°,
∴∠HLE=∠CDE;
∵∠CED=∠FEH,DE=EL,
∴△CDE≌△HLE,
∴CD=HL,
∴AH=3AF=3CD;
∵G是CD的中点,即CG=
1
2
CD,
∴CG:AH=
1
2
:3=1:6.
∵AF∥CD,
∴△CGM∽△HAM,GM:AM=CG:AH=
1
2
:3=1:6.
考点梳理
考点
分析
点评
专题
正多边形和圆.
延长CE交AF的延长线于H,延长DE交AF延长线于L,根据正六边形的内角和定理可求出各内角的度数,利用平角的性质及等边三角形的性质可求出△FEL是等边三角形;再根据AAS定理求出△CDE≌△HLE,可得出AF=FL=HL,再利用AF∥CD可得△CGM∽△HAM,由三角形的相似比即可求解.
本题难度较大,涉及到等边三角形、全等三角形及相似三角形的判定定理及性质,有一定的综合性,根据题意作出辅助线,构造出三角形是解答此题的关键.
压轴题.
找相似题
(2013·自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是( )
某校科艺节汇报演出活动中,5个舞蹈演员,每人手执一把大小形状都相同扇子,扇子完全展开后的半径OA为24cm,三把扇子完全展开刚好组成了图2所示的一朵圆形的花,然后又一变化,五把扇子组成了图3所示的五角星的形状,求图3所示五角星中∠α的角度.
如图1,请求圆内接正五边形的中心角∠AOB=
72
72
°,及∠ACB=
36
36
°,如图2,请求圆内接正六边形的中心角∠AOB=
60
60
°,及∠ACB=
30
30
°
探究:正n边形每条边所对的中心角∠AOB=
360
n
360
n
°,及∠ACB=
180
n
180
n
°(用n表示)
如图一,有一个圆O和两个正六边形T
1
,T
2
.T
1
的六个顶点都在圆周上,T
2
的六条边都和圆O相切(我们称T
1
,T
2
分别为圆O的内接正六边形和外切正六边形).
(1)请你在备用图中画出圆O的内接正六边形,并简要写出作法;
(2)设圆O的半径为R,求T
1
,T
2
的边长(用含R的式子表示);
(3)设圆O的半径为R,求图二中阴影部分的面积(用含R的式子表示)
如图所示,点A坐标为(0,3),⊙A半径为1,点B在x轴上.
(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;
(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.