试题
题目:
(2013·齐齐哈尔)如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接,称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.
若已知具有同形结构的正n边形的每个内角度数为α,满足:360=kα(k为正整数),多边形外角和为360°,则k关于边数n的函数是
k=
2n
n-2
(n=3,4,6)或k=2+
4
n-2
(n=3,4,6)
k=
2n
n-2
(n=3,4,6)或k=2+
4
n-2
(n=3,4,6)
(写出n的取值范围)
答案
k=
2n
n-2
(n=3,4,6)或k=2+
4
n-2
(n=3,4,6)
解:∵n边形的内角和为(n-2)·180°,
∴正n边形的每个内角度数α=
(n-2)·180
n
,
∵360=kα,
∴k·
(n-2)·180
n
=360,
∴k=
2n
n-2
.
∵k=
2n
n-2
=
2(n-2)+4
n-2
=2+
4
n-2
,k为正整数,
∴n-2=1,2,±4,
∴n=3,4,6,-2,
又∵n≥3,
∴n=3,4,6.
即k=
2n
n-2
(n=3,4,6).
故答案为k=
2n
n-2
(n=3,4,6).
考点梳理
考点
分析
点评
专题
正多边形和圆;多边形内角与外角.
先根据n边形的内角和为(n-2)·180°及正n边形的每个内角相等,得出α=
(n-2)·180
n
,再代入360=kα,即可求出k关于边数n的函数关系式,然后根据k为正整数求出n的取值范围.
本题考查了n边形的内角和公式,正n边形的性质及分式的变形,根据正n边形的性质求出k关于边数n的函数关系式是解题的关键.
压轴题;规律型;分类讨论.
找相似题
(2013·自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是( )
某校科艺节汇报演出活动中,5个舞蹈演员,每人手执一把大小形状都相同扇子,扇子完全展开后的半径OA为24cm,三把扇子完全展开刚好组成了图2所示的一朵圆形的花,然后又一变化,五把扇子组成了图3所示的五角星的形状,求图3所示五角星中∠α的角度.
如图1,请求圆内接正五边形的中心角∠AOB=
72
72
°,及∠ACB=
36
36
°,如图2,请求圆内接正六边形的中心角∠AOB=
60
60
°,及∠ACB=
30
30
°
探究:正n边形每条边所对的中心角∠AOB=
360
n
360
n
°,及∠ACB=
180
n
180
n
°(用n表示)
如图一,有一个圆O和两个正六边形T
1
,T
2
.T
1
的六个顶点都在圆周上,T
2
的六条边都和圆O相切(我们称T
1
,T
2
分别为圆O的内接正六边形和外切正六边形).
(1)请你在备用图中画出圆O的内接正六边形,并简要写出作法;
(2)设圆O的半径为R,求T
1
,T
2
的边长(用含R的式子表示);
(3)设圆O的半径为R,求图二中阴影部分的面积(用含R的式子表示)
如图所示,点A坐标为(0,3),⊙A半径为1,点B在x轴上.
(1)若点B坐标为(4,0),⊙B半径为3,试判断⊙A与⊙B位置关系;
(2)若⊙B过M(-2,0)且与⊙A相切,求B点坐标.