试题
题目:
若一个三角形的3个内角度数之比为5:3:1,则与之对应的3个外角的度数之比为( )
A.4:3:2
B.2:3:4
C.3:2:4
D.3:1:5
答案
B
解:由题意设比例的一份为x,则三角形的三个内角分别表示为5x,3x,x,
根据三角形的内角和定理可得:5x+3x+x=180°,即9x=180°,
解得:x=20°,
∴三角形的三个内角分别为:100°,60°,20°,
∴与之对应的三个外角的度数分别为:80°,120°,160°,
则与之对应的3个外角的度数之比为80:120:160=2:3:4.
故选B
考点梳理
考点
分析
点评
专题
三角形内角和定理.
根据已知的比例设每一份为x,根据比例分别表示出三角形的三个内角,利用三角形的内角和定理列出关于x的方程,求出方程的解得到x的值,确定出三角形三个内角的度数,根据内角与之对应的外角互为邻补角,进而求出与之对应的三个外角的度数,可求出三外角度数之比.
此题考查了三角形的内角和定理,比例的性质,以及邻补角的性质,利用了方程的思想,遇到线段及角的比例问题,常常设出每一份为x,根据比例表示出各项,建立方程来解决问题.
计算题.
找相似题
△ABC中,∠A:∠B:∠C=1:2:4,则△ABC是
钝角三角形
钝角三角形
.
三角形的三个内角中至少有
2
2
个锐角,三个外角中最多有
1
1
个锐角.
如图,在△ABC中,∠C=90°,BD平分∠ABC,D在AC上,DE垂直AB,已知∠BDE=60°,则∠A=
30
30
度.
三角形三个内角的比是1:3:5,则最大的内角是
100°
100°
.
在△ABC中,∠B=60°,∠A=70°,则∠C=
50°
50°
.