试题
题目:
如图,△ABC中,∠1=∠2,∠3=∠4,∠5=∠6.∠A=60°.求∠ECF、∠FEC的度数.
答案
解:∵∠A=60°,且∠1=∠2,∠3=∠4,
∴∠2+∠3=
1
2
(180°-∠A)=
1
2
(180°-60°)=60°,
∵∠FEC是△BCE的外角,
∴∠FEC=∠2+∠3=60°,
又∵B、C、D共线,∠3=∠4,∠5=∠6,
∴∠4+∠5=90°;
∴∠FCE=∠4+∠5=90°.
解:∵∠A=60°,且∠1=∠2,∠3=∠4,
∴∠2+∠3=
1
2
(180°-∠A)=
1
2
(180°-60°)=60°,
∵∠FEC是△BCE的外角,
∴∠FEC=∠2+∠3=60°,
又∵B、C、D共线,∠3=∠4,∠5=∠6,
∴∠4+∠5=90°;
∴∠FCE=∠4+∠5=90°.
考点梳理
考点
分析
点评
专题
三角形内角和定理.
先根据三角形内角和定理及角平分线的性质求出∠2+∠3的度数,再由三角形外角的性质求出∠FEC的度数;根据B、C、D共线,∠3=∠4,∠5=∠6,可得出∠4+∠5=90°,故可求出∠ECF的度数.
本题考查的是三角形内角和定理及角平分线的性质、三角形外角的性质,熟知三角形的内角和是180°是解答此题的关键.
探究型.
找相似题
△ABC中,∠A:∠B:∠C=1:2:4,则△ABC是
钝角三角形
钝角三角形
.
三角形的三个内角中至少有
2
2
个锐角,三个外角中最多有
1
1
个锐角.
如图,在△ABC中,∠C=90°,BD平分∠ABC,D在AC上,DE垂直AB,已知∠BDE=60°,则∠A=
30
30
度.
三角形三个内角的比是1:3:5,则最大的内角是
100°
100°
.
在△ABC中,∠B=60°,∠A=70°,则∠C=
50°
50°
.