试题
题目:
如图,AD、AE分别为△ABC的高和角平分线,∠B=35°,∠C=45°,求∠DAE的度数.
答案
解:在△ABC中,∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC,
∵∠B=35°,∠C=45°,
∴∠BAC=100°,∠DAC=45°,
∴∠CAE=50°,
∴∠DAE=∠CAE-∠DAC=5°.
解:在△ABC中,∵AE平分∠BAC,
∴∠CAE=
1
2
∠BAC,
∵∠B=35°,∠C=45°,
∴∠BAC=100°,∠DAC=45°,
∴∠CAE=50°,
∴∠DAE=∠CAE-∠DAC=5°.
考点梳理
考点
分析
点评
三角形内角和定理.
根据三角形内角和定理求得∠BAC的度数,则依据角平分线的定义求得角∠EAC,然后在直角△ACD中,求得∠DAC的度数,则∠DAE=∠CAE-∠DAC即可求解.
本题考查了三角形的内角和定理以及角平分线的定义,理解定理是关键.
找相似题
△ABC中,∠A:∠B:∠C=1:2:4,则△ABC是
钝角三角形
钝角三角形
.
三角形的三个内角中至少有
2
2
个锐角,三个外角中最多有
1
1
个锐角.
如图,在△ABC中,∠C=90°,BD平分∠ABC,D在AC上,DE垂直AB,已知∠BDE=60°,则∠A=
30
30
度.
三角形三个内角的比是1:3:5,则最大的内角是
100°
100°
.
在△ABC中,∠B=60°,∠A=70°,则∠C=
50°
50°
.