试题

题目:
青果学院如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B=75°,求∠A的度数.
答案
青果学院解:∵∠1+∠2=90°,CE,DE分别平分∠BCD,∠ADC,
∴∠ADC+∠BCD=2(∠1+∠2)=180°,
∴AD∥BC,∴∠A+∠B=180°,
∵∠B=75°,
∴∠A=180°-75°=105°.
青果学院解:∵∠1+∠2=90°,CE,DE分别平分∠BCD,∠ADC,
∴∠ADC+∠BCD=2(∠1+∠2)=180°,
∴AD∥BC,∴∠A+∠B=180°,
∵∠B=75°,
∴∠A=180°-75°=105°.
考点梳理
三角形内角和定理;平行线的性质.
根据已知条件∠1+∠2=90°,CE,DE分别为角平分线,可得一对同旁内角互补,证得AD∥BC;根据两直线平行,同旁内角互补由已知∠B的度数,即可求出∠A的度数.
本题主要考查平分线的性质,由已知能够注意到AD∥BC,这是解题的关键.
计算题.
找相似题