试题
题目:
如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数( )
A.35°
B.5°
C.15°
D.25°
答案
B
解:∵∠B=50°,∠C=60°,
∴∠BAC=180°-∠B-∠C=70°,
∵AE是∠BAC的角平分线,
∴∠EAC=
1
2
∠BAC=35°,
∵AD是高,
∴∠ADC=90°,
∴∠DAC=90°-∠C=30°,
∴∠EAD=∠EAC-∠DAC=5°.
故选B.
考点梳理
考点
分析
点评
三角形内角和定理;角平分线的定义.
利用三角形的内角和是180°可得∠BAC的度数;AE是∠BAC的角平分线,可得∠EAC的度数;利用AD是高可得∠ADC=90°,那么可求得∠DAC度数,那么∠EAD=∠EAC-∠DAC.
关键是得到和所求角有关的角的度数;用到的知识点为:三角形的内角和是180°;角平分线把一个角分成相等的两个角.
找相似题
△ABC中,∠A:∠B:∠C=1:2:4,则△ABC是
钝角三角形
钝角三角形
.
三角形的三个内角中至少有
2
2
个锐角,三个外角中最多有
1
1
个锐角.
如图,在△ABC中,∠C=90°,BD平分∠ABC,D在AC上,DE垂直AB,已知∠BDE=60°,则∠A=
30
30
度.
三角形三个内角的比是1:3:5,则最大的内角是
100°
100°
.
在△ABC中,∠B=60°,∠A=70°,则∠C=
50°
50°
.