试题
题目:
设A,B,C是三角形的三个内角,满足3A>5B,3C<2B,这个三角形是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.都有可能
答案
B
解:∵3A>5B,2B>3C,
∴3A+2B>5B+3C,
即A>B+C,
不等式两边加A,
∴2A>A+B+C,而A+B+C=180°,
∴2A>180°,即A>90°,
∴这个三角形是钝角三角形.
故选B.
考点梳理
考点
分析
点评
专题
三角形内角和定理.
由3A>5B,3C<2B,得到3A+2B>5B+3C,则A>B+C,不等式两边加A,得到2A>A+B+C,在利用三角形的内角和定理得A>90°,即可判断三角形的形状.
本题考查了三角形的内角和定理:三角形的三个内角的和为180°.也考查了代数式的变形能力以及三角形的分类.
推理填空题.
找相似题
△ABC中,∠A:∠B:∠C=1:2:4,则△ABC是
钝角三角形
钝角三角形
.
三角形的三个内角中至少有
2
2
个锐角,三个外角中最多有
1
1
个锐角.
如图,在△ABC中,∠C=90°,BD平分∠ABC,D在AC上,DE垂直AB,已知∠BDE=60°,则∠A=
30
30
度.
三角形三个内角的比是1:3:5,则最大的内角是
100°
100°
.
在△ABC中,∠B=60°,∠A=70°,则∠C=
50°
50°
.