试题
题目:
如图,OB、OC分别平分∠ABC和∠ACB,若∠A=60°,则∠O等于( )
A.100°
B.120°
C.140°
D.150°
答案
B
解:∵OB、OC分别是∠ABC和∠ACB的角平分线,
∴∠OBC+∠OCB=
1
2
∠ABC+
1
2
∠ACB=
1
2
(∠ABC+∠ACB),
∵∠A=60°,
∴∠OBC+∠OCB=
1
2
(180°-60°)=60°,
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-60°
=120°.
故选B.
考点梳理
考点
分析
点评
专题
三角形内角和定理.
根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数.
本题主要考查了角平分线的定义和三角形内角和定理,熟记概念和定理是解题的关键,难度适中.
应用题.
找相似题
△ABC中,∠A:∠B:∠C=1:2:4,则△ABC是
钝角三角形
钝角三角形
.
三角形的三个内角中至少有
2
2
个锐角,三个外角中最多有
1
1
个锐角.
如图,在△ABC中,∠C=90°,BD平分∠ABC,D在AC上,DE垂直AB,已知∠BDE=60°,则∠A=
30
30
度.
三角形三个内角的比是1:3:5,则最大的内角是
100°
100°
.
在△ABC中,∠B=60°,∠A=70°,则∠C=
50°
50°
.