试题
题目:
(2012·天门)如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于( )
A.70°
B.26°
C.36°
D.16°
答案
B
解:∵AB∥CD,∠A=48°,
∴∠1=∠A=48°,
∵∠C=22°,
∴∠E=∠1-∠C=48°-22°=26°.
故选B.
考点梳理
考点
分析
点评
平行线的性质;三角形内角和定理.
由AB∥CD,根据两直线平行,内错角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.
此题考查了平行线的性质与三角形外角的性质.此题比较简单,注意掌握两直线平行,内错角相等定理的应用.
找相似题
△ABC中,∠A:∠B:∠C=1:2:4,则△ABC是
钝角三角形
钝角三角形
.
三角形的三个内角中至少有
2
2
个锐角,三个外角中最多有
1
1
个锐角.
如图,在△ABC中,∠C=90°,BD平分∠ABC,D在AC上,DE垂直AB,已知∠BDE=60°,则∠A=
30
30
度.
三角形三个内角的比是1:3:5,则最大的内角是
100°
100°
.
在△ABC中,∠B=60°,∠A=70°,则∠C=
50°
50°
.