试题
题目:
如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是
70°
70°
.
答案
70°
解:连接AC,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠BAE=25°,∠ECD=45°,
∴∠CAE+∠ACE=180°-25°-45°=110°,
∵∠E+∠CAE+∠ACE=180°,
∴∠E=180°-110°=70°,
故答案为:70°.
考点梳理
考点
分析
点评
专题
平行线的性质;三角形内角和定理.
连接AC,根据平行线的性质得到∠BAC+∠ACD=180°,求出∠CAE+∠ACE=110°,根据三角形的内角和定理即可求出答案.
本题主要考查对平行线的性质,三角形的内角和定理等知识点的理解和掌握,正确作辅助线并利用性质进行计算是解此题的关键.
计算题.
找相似题
△ABC中,∠A:∠B:∠C=1:2:4,则△ABC是
钝角三角形
钝角三角形
.
三角形的三个内角中至少有
2
2
个锐角,三个外角中最多有
1
1
个锐角.
如图,在△ABC中,∠C=90°,BD平分∠ABC,D在AC上,DE垂直AB,已知∠BDE=60°,则∠A=
30
30
度.
三角形三个内角的比是1:3:5,则最大的内角是
100°
100°
.
在△ABC中,∠B=60°,∠A=70°,则∠C=
50°
50°
.