试题
题目:
如图所示,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADE=∠EDF,∠CED=∠FEG.则∠F=
50°
50°
.
答案
50°
解:在△ABC中,∠A=10°,∠ABC=90°,
∴∠ACB=80°,
∵∠DCE=∠ACB=80°,
在△ACD中,∠DCE是它的一个外角,
∴∠DCE=∠A+∠ADC,
∴∠ADC=70°,∠EDF=∠ADC=70°.
在△ADE中,∠EDF是它的一个外角,
∴∠EDF=∠A+∠AED,
∴∠AED=60°,∠FEG=∠AED=60°.
在△AEF中,∠FEG是它的一个外角,
∴∠FEG=∠A+∠F,
∴∠F=∠FEG-∠A=60°-10°=50°.
故答案为:50°.
考点梳理
考点
分析
点评
专题
三角形内角和定理.
根据直角三角形的两个锐角互余,得∠ACB=80°,结合已知条件和三角形的外角的性质,求得∠ADC=70°,依此类推即可求解.
本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和是180°是解答此题的关键.
探究型.
找相似题
△ABC中,∠A:∠B:∠C=1:2:4,则△ABC是
钝角三角形
钝角三角形
.
三角形的三个内角中至少有
2
2
个锐角,三个外角中最多有
1
1
个锐角.
如图,在△ABC中,∠C=90°,BD平分∠ABC,D在AC上,DE垂直AB,已知∠BDE=60°,则∠A=
30
30
度.
三角形三个内角的比是1:3:5,则最大的内角是
100°
100°
.
在△ABC中,∠B=60°,∠A=70°,则∠C=
50°
50°
.