试题

题目:
青果学院如图,A是反比例函数y=
4
x
图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,则△ABP的面积为
2
2

答案
2

青果学院解:设A的坐标为(a,b),延长AB,过P作PQ⊥AQ,交AB延长线与点Q,
由A在反比例函数图象上,将x=a,y=b代入反比例解析式得:b=
4
a
,即ab=4,
∴AB=a,PQ=b,
则S△ABP=
1
2
AB·PQ=
1
2
ab=2.
故答案为:2
考点梳理
反比例函数系数k的几何意义.
设A的坐标为(a,b),延长AB,过P作PQ垂直于AQ,交AB延长线于点Q,将A的坐标代入反比例函数解析式中,得到ab=4,三角形ABP中AB为底,PQ为高,利用三角形的面积公式求出即可.
此题考查了反比例函数系数k的几何意义,关键是明白A的横坐标为三角形的底,A的纵坐标为底上的高.
计算题.
找相似题