试题

题目:
青果学院如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=
4
x
(x>0)
的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为
2
13
18
2
13
18

答案
2
13
18

解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=
1
2
|k|=2,
∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,
设图中阴影部分的面积从左向右依次为s1,s2,s3
则s1=
1
2
|k|=2,
∵OA1=A1A2=A2A3
∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,
∴图中阴影部分的面积分别是s1=2,s2=
1
2
,s3=
2
9

∴图中阴影部分的面积之和=2+
1
2
+
2
9
=2
13
18

故答案为:2
13
18
考点梳理
反比例函数系数k的几何意义.
先根据反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=
1
2
|k|=2,再根据相似三角形的面积比等于相似比的平方得到3个阴影部分的三角形的面积从而求得面积和.
此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|.
找相似题